Multi-dimensional Arrays

Julia, like most technical computing languages, provides a first-class array implementation. Most technical computing languages pay a lot of attention to their array implementation at the expense of other containers. Julia does not treat arrays in any special way. The array library is implemented almost completely in Julia itself, and derives its performance from the compiler, just like any other code written in Julia.

An array is a collection of objects stored in a multi-dimensional grid. In the most general case, an array may contain objects of type Any. For most computational purposes, arrays should contain objects of a more specific type, such as Float64 or Int32.

In general, unlike many other technical computing languages, Julia does not expect programs to be written in a vectorized style for performance. Julia’s compiler uses type inference and generates optimized code for scalar array indexing, allowing programs to be written in a style that is convenient and readable, without sacrificing performance, and using less memory at times.

In Julia, all arguments to functions are passed by reference. Some technical computing languages pass arrays by value, and this is convenient in many cases. In Julia, modifications made to input arrays within a function will be visible in the parent function. The entire Julia array library ensures that inputs are not modified by library functions. User code, if it needs to exhibit similar behaviour, should take care to create a copy of inputs that it may modify.


Basic Functions

Function Description
eltype(A) the type of the elements contained in A
length(A) the number of elements in A
ndims(A) the number of dimensions of A
size(A) a tuple containing the dimensions of A
size(A,n) the size of A in a particular dimension
stride(A,k) the stride (linear index distance between adjacent elements) along dimension k
strides(A) a tuple of the strides in each dimension

Construction and Initialization

Many functions for constructing and initializing arrays are provided. In the following list of such functions, calls with a dims... argument can either take a single tuple of dimension sizes or a series of dimension sizes passed as a variable number of arguments.

Function Description
Array(type, dims...) an uninitialized dense array
cell(dims...) an uninitialized cell array (heterogeneous array)
zeros(type, dims...) an array of all zeros of specified type
ones(type, dims...) an array of all ones of specified type
trues(dims...) a Bool array with all values true
falses(dims...) a Bool array with all values false
reshape(A, dims...) an array with the same data as the given array, but with different dimensions.
copy(A) copy A
deepcopy(A) copy A, recursively copying its elements
similar(A, element_type, dims...) an uninitialized array of the same type as the given array (dense, sparse, etc.), but with the specified element type and dimensions. The second and third arguments are both optional, defaulting to the element type and dimensions of A if omitted.
reinterpret(type, A) an array with the same binary data as the given array, but with the specified element type
rand(dims) Array of Float64s with random, iid[#]_ and uniformly distributed values in [0,1)
randn(dims) Array of Float64s with random, iid and standard normally distributed random values
eye(n) n-by-n identity matrix
eye(m, n) m-by-n identity matrix
linspace(start, stop, n) vector of n linearly-spaced elements from start to stop
fill!(A, x) fill the array A with value x
[1]iid, independently and identically distributed.


Arrays can be constructed and also concatenated using the following functions:

Function Description
cat(k, A...) concatenate input n-d arrays along the dimension k
vcat(A...) shorthand for cat(1, A...)
hcat(A...) shorthand for cat(2, A...)

Scalar values passed to these functions are treated as 1-element arrays.

The concatenation functions are used so often that they have special syntax:

Expression Calls
[A B C ...] hcat
[A, B, C, ...] vcat
[A B; C D; ...] hvcat

hvcat concatenates in both dimension 1 (with semicolons) and dimension 2 (with spaces).

Typed array initializers

An array with a specific element type can be constructed using the syntax T[A, B, C, ...]. This will construct a 1-d array with element type T, initialized to contain elements A, B, C, etc.

Special syntax is available for constructing arrays with element type Any:

Expression Yields
{A B C ...} A 1xN Any array
{A, B, C, ...} A 1-d Any array (vector)
{A B; C D; ...} A 2-d Any array

Note that this form does not do any concatenation; each argument becomes an element of the resulting array.


Comprehensions provide a general and powerful way to construct arrays. Comprehension syntax is similar to set construction notation in mathematics:

A = [ F(x,y,...) for x=rx, y=ry, ... ]

The meaning of this form is that F(x,y,...) is evaluated with the variables x, y, etc. taking on each value in their given list of values. Values can be specified as any iterable object, but will commonly be ranges like 1:n or 2:(n-1), or explicit arrays of values like [1.2, 3.4, 5.7]. The result is an N-d dense array with dimensions that are the concatenation of the dimensions of the variable ranges rx, ry, etc. and each F(x,y,...) evaluation returns a scalar.

The following example computes a weighted average of the current element and its left and right neighbor along a 1-d grid. :

julia> const x = rand(8)
8-element Array{Float64,1}:

julia> [ 0.25*x[i-1] + 0.5*x[i] + 0.25*x[i+1] for i=2:length(x)-1 ]
6-element Array{Float64,1}:


In the above example, x is declared as constant because type inference in Julia does not work as well on non-constant global variables.

The resulting array type is inferred from the expression; in order to control the type explicitly, the type can be prepended to the comprehension. For example, in the above example we could have avoided declaring x as constant, and ensured that the result is of type Float64 by writing:

Float64[ 0.25*x[i-1] + 0.5*x[i] + 0.25*x[i+1] for i=2:length(x)-1 ]

Using curly brackets instead of square brackets is a shorthand notation for an array of type Any:

julia> { i/2 for i = 1:3 }
3-element Array{Any,1}:


The general syntax for indexing into an n-dimensional array A is:

X = A[I_1, I_2, ..., I_n]

where each I_k may be:

  1. A scalar value
  2. A Range of the form :, a:b, or a:b:c
  3. An arbitrary integer vector, including the empty vector []
  4. A boolean vector

The result X generally has dimensions (length(I_1), length(I_2), ..., length(I_n)), with location (i_1, i_2, ..., i_n) of X containing the value A[I_1[i_1], I_2[i_2], ..., I_n[i_n]]. Trailing dimensions indexed with scalars are dropped. For example, the dimensions of A[I, 1] will be (length(I),). Boolean vectors are first transformed with find; the size of a dimension indexed by a boolean vector will be the number of true values in the vector.

Indexing syntax is equivalent to a call to getindex:

X = getindex(A, I_1, I_2, ..., I_n)


julia> x = reshape(1:16, 4, 4)
4x4 Array{Int64,2}:
 1  5   9  13
 2  6  10  14
 3  7  11  15
 4  8  12  16

julia> x[2:3, 2:end-1]
2x2 Array{Int64,2}:
 6  10
 7  11

Empty ranges of the form n:n-1 are sometimes used to indicate the inter-index location between n-1 and n. For example, the searchsorted function uses this convention to indicate the insertion point of a value not found in a sorted array:

julia> a = [1,2,5,6,7];

julia> searchsorted(a, 3)


The general syntax for assigning values in an n-dimensional array A is:

A[I_1, I_2, ..., I_n] = X

where each I_k may be:

  1. A scalar value
  2. A Range of the form :, a:b, or a:b:c
  3. An arbitrary integer vector, including the empty vector []
  4. A boolean vector

If X is an array, its size must be (length(I_1), length(I_2), ..., length(I_n)), and the value in location i_1, i_2, ..., i_n of A is overwritten with the value X[I_1[i_1], I_2[i_2], ..., I_n[i_n]]. If X is not an array, its value is written to all referenced locations of A.

A boolean vector used as an index behaves as in getindex (it is first transformed with find).

Index assignment syntax is equivalent to a call to setindex!:

setindex!(A, X, I_1, I_2, ..., I_n)


julia> x = reshape(1:9, 3, 3)
3x3 Array{Int64,2}:
 1  4  7
 2  5  8
 3  6  9

julia> x[1:2, 2:3] = -1

julia> x
3x3 Array{Int64,2}:
 1  -1  -1
 2  -1  -1
 3   6   9

Vectorized Operators and Functions

The following operators are supported for arrays. The dot version of a binary operator should be used for elementwise operations.

  1. Unary arithmetic — -, +, !
  2. Binary arithmetic — +, -, *, .*, /, ./, \, .\, ^, .^, div, mod
  3. Comparison — .==, .!=, .<, .<=, .>, .>=
  4. Unary Boolean or bitwise — ~
  5. Binary Boolean or bitwise — &, |, $

Some operators without dots operate elementwise anyway when one argument is a scalar. These operators are *, /, \, and the bitwise operators.

Note that comparisons such as == operate on whole arrays, giving a single boolean answer. Use dot operators for elementwise comparisons.

The following built-in functions are also vectorized, whereby the functions act elementwise:

abs abs2 angle cbrt
airy airyai airyaiprime airybi airybiprime airyprime
acos acosh asin asinh atan atan2 atanh
acsc acsch asec asech acot acoth
cos  cospi cosh  sin  sinpi sinh  tan  tanh  sinc  cosc
csc  csch  sec  sech  cot  coth
acosd asind atand asecd acscd acotd
cosd  sind  tand  secd  cscd  cotd
besselh besseli besselj besselj0 besselj1 besselk bessely bessely0 bessely1
exp  erf  erfc  erfinv erfcinv exp2  expm1
beta dawson digamma erfcx erfi
exponent eta zeta gamma
hankelh1 hankelh2
 ceil  floor  round  trunc
iceil ifloor iround itrunc
isfinite isinf isnan
lbeta lfact lgamma
log log10 log1p log2
copysign max min significand
sqrt hypot

Note that there is a difference between min and max, which operate elementwise over multiple array arguments, and minimum and maximum, which find the smallest and largest values within an array.

Julia provides the @vectorize_1arg and @vectorize_2arg macros to automatically vectorize any function of one or two arguments respectively. Each of these takes two arguments, namely the Type of argument (which is usually chosen to be the most general possible) and the name of the function to vectorize. Here is a simple example:

julia> square(x) = x^2
square (generic function with 1 method)

julia> @vectorize_1arg Number square
square (generic function with 4 methods)

julia> methods(square)
# 4 methods for generic function "square":
square{T<:Number}(::AbstractArray{T<:Number,1}) at operators.jl:359
square{T<:Number}(::AbstractArray{T<:Number,2}) at operators.jl:360
square{T<:Number}(::AbstractArray{T<:Number,N}) at operators.jl:362
square(x) at none:1

julia> square([1 2 4; 5 6 7])
2x3 Array{Int64,2}:
  1   4  16
 25  36  49


It is sometimes useful to perform element-by-element binary operations on arrays of different sizes, such as adding a vector to each column of a matrix. An inefficient way to do this would be to replicate the vector to the size of the matrix:

julia> a = rand(2,1); A = rand(2,3);

julia> repmat(a,1,3)+A
2x3 Array{Float64,2}:
 1.20813  1.82068  1.25387
 1.56851  1.86401  1.67846

This is wasteful when dimensions get large, so Julia offers broadcast, which expands singleton dimensions in array arguments to match the corresponding dimension in the other array without using extra memory, and applies the given function elementwise:

julia> broadcast(+, a, A)
2x3 Array{Float64,2}:
 1.20813  1.82068  1.25387
 1.56851  1.86401  1.67846

julia> b = rand(1,2)
1x2 Array{Float64,2}:
 0.867535  0.00457906

julia> broadcast(+, a, b)
2x2 Array{Float64,2}:
 1.71056  0.847604
 1.73659  0.873631

Elementwise operators such as .+ and .* perform broadcasting if necessary. There is also a broadcast! function to specify an explicit destination, and broadcast_getindex and broadcast_setindex! that broadcast the indices before indexing.


The base array type in Julia is the abstract type AbstractArray{T,N}. It is parametrized by the number of dimensions N and the element type T. AbstractVector and AbstractMatrix are aliases for the 1-d and 2-d cases. Operations on AbstractArray objects are defined using higher level operators and functions, in a way that is independent of the underlying storage. These operations generally work correctly as a fallback for any specific array implementation.

The AbstractArray type includes anything vaguely array-like, and implementations of it might be quite different from conventional arrays. For example, elements might be computed on request rather than stored. However, any concrete AbstractArray{T,N} type should generally implement at least size(A) (returing an Int tuple), getindex(A,i) and getindex(A,i1,...,iN) (returning an element of type T); mutable arrays should also implement setindex!. It is recommended that these operations have nearly constant time complexity, or technically Õ(1) complexity, as otherwise some array functions may be unexpectedly slow. Concrete types should also typically provide a similar(A,T=eltype(A),dims=size(A)) method, which is used to allocate a similar array for copy and other out-of-place operations.

DenseArray is an abstract subtype of AbstractArray intended to include all arrays that are laid out at regular offsets in memory, and which can therefore be passed to external C and Fortran functions expecting this memory layout. Subtypes should provide a method stride(A,k) that returns the “stride” of dimension k: increasing the index of dimension k by 1 should increase the index i of getindex(A,i) by stride(A,k). If a pointer conversion method convert(Ptr{T}, A) is provided, the memory layout should correspond in the same way to these strides.

The Array{T,N} type is a specific instance of DenseArray where elements are stored in column-major order (see additional notes in Performance Tips). Vector and Matrix are aliases for the 1-d and 2-d cases. Specific operations such as scalar indexing, assignment, and a few other basic storage-specific operations are all that have to be implemented for Array, so that the rest of the array library can be implemented in a generic manner.

SubArray is a specialization of AbstractArray that performs indexing by reference rather than by copying. A SubArray is created with the sub function, which is called the same way as getindex (with an array and a series of index arguments). The result of sub looks the same as the result of getindex, except the data is left in place. sub stores the input index vectors in a SubArray object, which can later be used to index the original array indirectly.

StridedVector and StridedMatrix are convenient aliases defined to make it possible for Julia to call a wider range of BLAS and LAPACK functions by passing them either Array or SubArray objects, and thus saving inefficiencies from memory allocation and copying.

The following example computes the QR decomposition of a small section of a larger array, without creating any temporaries, and by calling the appropriate LAPACK function with the right leading dimension size and stride parameters.

julia> a = rand(10,10)
10x10 Array{Float64,2}:
 0.561255   0.226678   0.203391  0.308912   …  0.750307  0.235023   0.217964
 0.718915   0.537192   0.556946  0.996234      0.666232  0.509423   0.660788
 0.493501   0.0565622  0.118392  0.493498      0.262048  0.940693   0.252965
 0.0470779  0.736979   0.264822  0.228787      0.161441  0.897023   0.567641
 0.343935   0.32327    0.795673  0.452242      0.468819  0.628507   0.511528
 0.935597   0.991511   0.571297  0.74485    …  0.84589   0.178834   0.284413
 0.160706   0.672252   0.133158  0.65554       0.371826  0.770628   0.0531208
 0.306617   0.836126   0.301198  0.0224702     0.39344   0.0370205  0.536062
 0.890947   0.168877   0.32002   0.486136      0.096078  0.172048   0.77672
 0.507762   0.573567   0.220124  0.165816      0.211049  0.433277   0.539476

julia> b = sub(a, 2:2:8,2:2:4)
4x2 SubArray{Float64,2,Array{Float64,2},(StepRange{Int64,Int64},StepRange{Int64,Int64})}:
 0.537192  0.996234
 0.736979  0.228787
 0.991511  0.74485
 0.836126  0.0224702

julia> (q,r) = qr(b);

julia> q
4x2 Array{Float64,2}:
 -0.338809   0.78934
 -0.464815  -0.230274
 -0.625349   0.194538
 -0.527347  -0.534856

julia> r
2x2 Array{Float64,2}:
 -1.58553  -0.921517
  0.0       0.866567

Sparse Matrices

Sparse matrices are matrices that contain enough zeros that storing them in a special data structure leads to savings in space and execution time. Sparse matrices may be used when operations on the sparse representation of a matrix lead to considerable gains in either time or space when compared to performing the same operations on a dense matrix.

Compressed Sparse Column (CSC) Storage

In Julia, sparse matrices are stored in the Compressed Sparse Column (CSC) format. Julia sparse matrices have the type SparseMatrixCSC{Tv,Ti}, where Tv is the type of the nonzero values, and Ti is the integer type for storing column pointers and row indices.:

type SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSparseMatrix{Tv,Ti}
    m::Int                  # Number of rows
    n::Int                  # Number of columns
    colptr::Vector{Ti}      # Column i is in colptr[i]:(colptr[i+1]-1)
    rowval::Vector{Ti}      # Row values of nonzeros
    nzval::Vector{Tv}       # Nonzero values

The compressed sparse column storage makes it easy and quick to access the elements in the column of a sparse matrix, whereas accessing the sparse matrix by rows is considerably slower. Operations such as insertion of nonzero values one at a time in the CSC structure tend to be slow. This is because all elements of the sparse matrix that are beyond the point of insertion have to be moved one place over.

All operations on sparse matrices are carefully implemented to exploit the CSC data structure for performance, and to avoid expensive operations.

If you have data in CSC format from a different application or library, and wish to import it in Julia, make sure that you use 1-based indexing. The row indices in every column need to be sorted. If your SparseMatrixCSC object contains unsorted row indices, one quick way to sort them is by doing a double transpose.

In some applications, it is convenient to store explicit zero values in a SparseMatrixCSC. These are accepted by functions in Base (but there is no guarantee that they will be preserved in mutating operations). Such explicitly stored zeros are treated as structural nonzeros by many routines. The nnz function returns the number of elements explicitly stored in the sparse data structure, including structural nonzeros. In order to count the exact number of actual values that are nonzero, use countnz, which inspects every stored element of a sparse matrix.

Sparse matrix constructors

The simplest way to create sparse matrices is to use functions equivalent to the zeros and eye functions that Julia provides for working with dense matrices. To produce sparse matrices instead, you can use the same names with an sp prefix:

julia> spzeros(3,5)
3x5 sparse matrix with 0 Float64 entries:

julia> speye(3,5)
3x5 sparse matrix with 3 Float64 entries:
        [1, 1]  =  1.0
        [2, 2]  =  1.0
        [3, 3]  =  1.0

The sparse function is often a handy way to construct sparse matrices. It takes as its input a vector I of row indices, a vector J of column indices, and a vector V of nonzero values. sparse(I,J,V) constructs a sparse matrix such that S[I[k], J[k]] = V[k].

julia> I = [1, 4, 3, 5]; J = [4, 7, 18, 9]; V = [1, 2, -5, 3];

julia> S = sparse(I,J,V)
5x18 sparse matrix with 4 Int64 entries:
        [1 ,  4]  =  1
        [4 ,  7]  =  2
        [5 ,  9]  =  3
        [3 , 18]  =  -5

The inverse of the sparse function is findn, which retrieves the inputs used to create the sparse matrix.

julia> findn(S)

julia> findnz(S)

Another way to create sparse matrices is to convert a dense matrix into a sparse matrix using the sparse function:

julia> sparse(eye(5))
5x5 sparse matrix with 5 Float64 entries:
        [1, 1]  =  1.0
        [2, 2]  =  1.0
        [3, 3]  =  1.0
        [4, 4]  =  1.0
        [5, 5]  =  1.0

You can go in the other direction using the dense or the full function. The issparse function can be used to query if a matrix is sparse.

julia> issparse(speye(5))

Sparse matrix operations

Arithmetic operations on sparse matrices also work as they do on dense matrices. Indexing of, assignment into, and concatenation of sparse matrices work in the same way as dense matrices. Indexing operations, especially assignment, are expensive, when carried out one element at a time. In many cases it may be better to convert the sparse matrix into (I,J,V) format using findnz, manipulate the non-zeroes or the structure in the dense vectors (I,J,V), and then reconstruct the sparse matrix.

Correspondence of dense and sparse methods

The following table gives a correspondence between built-in methods on sparse matrices and their corresponding methods on dense matrix types. In general, methods that generate sparse matrices differ from their dense counterparts in that the resulting matrix follows the same sparsity pattern as a given sparse matrix S, or that the resulting sparse matrix has density d, i.e. each matrix element has a probability d of being non-zero.

Details can be found in the Sparse Matrices section of the standard library reference.

Sparse Dense Description
spzeros(m,n) zeros(m,n) Creates a m-by-n matrix of zeros. (spzeros(m,n) is empty.)
spones(S) ones(m,n) Creates a matrix filled with ones. Unlike the dense version, spones has the same sparsity pattern as S.
speye(n) eye(n) Creates a n-by-n identity matrix.
full(S) sparse(A) Interconverts between dense and sparse formats.
sprand(m,n,d) rand(m,n) Creates a m-by-n random matrix (of density d) with iid non-zero elements distributed uniformly on the interval [0, 1].
sprandn(m,n,d) randn(m,n) Creates a m-by-n random matrix (of density d) with iid non-zero elements distributed according to the standard normal (Gaussian) distribution.
sprandn(m,n,d,X) randn(m,n,X) Creates a m-by-n random matrix (of density d) with iid non-zero elements distributed according to the X distribution. (Requires the Distributions package.)
sprandbool(m,n,d) randbool(m,n) Creates a m-by-n random matrix (of density d) with non-zero Bool elements with probability d (d =0.5 for randbool.)